Centroidal Dynamics Notes
Cite: Reaction Mass Pendulum
Formulas
Task
- $\mathbf{h}_g = A_g(q) \dot{q}$
- $\dot{\mathbf{h}}_g = A_g(q) \ddot{q} + \dot{A_g}(q,\dot{q})\dot{q}$
- $\mathbf{h}_g = (m\dot{c}, L_g)$
- $\dot{\mathbf{h}}_g = (m\ddot{c}, \dot{L}_g)$
- $\mathbf{h}_g = I_g v_g$
and
\[d\dot{\mathbf{h}}_g = \frac{\partial \dot{\mathbf{h}}_g}{\partial q} dq + \frac{\partial \dot{\mathbf{h}}_g}{\partial \dot{q}} d\dot{q} + \frac{\partial \dot{\mathbf{h}}_g}{\partial \ddot{q}} d\ddot{q}\]Control (contact_forces/contact_wrenches)
- $\mathbf{f} = \dot{\mathbf{h}}_g$
Cite: