科氏力
在旋转坐标系下观察,运动的物体(运动方向和旋转轴不为同一个轴时)会受到科氏力的作用。
Transport Theorem: \(\frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{f}=\left[\left(\frac{\mathrm{d}}{\mathrm{d} t}\right)_{r}+\boldsymbol{\Omega} \times\right] \boldsymbol{f}\) Rotating reference frame
Visualization of the Coriolis and centrifugal forces \(\mathbf{v}_{\mathbf{i}} \stackrel{\mathrm{def}}{=} \frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=\left(\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}\right)_{\mathrm{r}}+\mathbf{\Omega} \times \mathbf{r}=\mathbf{v}_{\mathrm{r}}+\mathbf{\Omega} \times \mathbf{r}\) where subscript i means the inertial frame of reference, and r means the rotating frame of reference. \(\mathbf{a}_{\mathrm{r}}=\mathbf{a}_{\mathrm{i}}-2 \boldsymbol{\Omega} \times \mathbf{v}_{\mathrm{r}}-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})-\frac{\mathrm{d} \boldsymbol{\Omega}}{\mathrm{d} t} \times \mathbf{r}\)