勿在浮沙筑高台
目录
1 深入理解计算机系统
- Data Lab
- Bomb Lab
- Attack Lab
- Cache Lab
- Shell Lab
- Malloc Lab
- Proxy Lab
2 数据结构与算法之美
数组
- 实现一个支持动态扩容的数组
- 实现一个大小固定的有序数组,支持动态增删改操作
- 实现两个有序数组合并为一个有序数组
链表
- 实现单链表、循环链表、双向链表,支持增删操作
- 实现单链表反转
- 实现两个有序的链表合并为一个有序链表
- 实现求链表的中间结点
栈
- 用数组实现一个顺序栈
- 用链表实现一个链式栈
- 编程模拟实现一个浏览器的前进、后退功能
队列
- 用数组实现一个顺序队列
- 用链表实现一个链式队列
- 实现一个循环队列
递归
- 编程实现斐波那契数列求值f(n)=f(n-1)+f(n-2)
- 编程实现求阶乘n!
- 编程实现一组数据集合的全排列
排序
- 实现归并排序、快速排序、插入排序、冒泡排序、选择排序
- 编程实现O(n)时间复杂度内找到一组数据的第K大元素
二分查找
- 实现一个有序数组的二分查找算法
- 实现模糊二分查找算法(比如大于等于给定值的第一个元素)
散列表
- 实现一个基于链表法解决冲突问题的散列表
- 实现一个LRU缓存淘汰算法
字符串
- 实现一个字符集,只包含a~z这26个英文字母的Trie树
- 实现朴素的字符串匹配算法
二叉树
- 实现一个二叉查找树,并且支持插入、删除、查找操作
- 实现查找二叉查找树中某个节点的后继、前驱节点
- 实现二叉树前、中、后序以及按层遍历
堆
- 实现一个小顶堆、大顶堆、优先级队列
- 实现堆排序
- 利用优先级队列合并K个有序数组
- 求一组动态数据集合的最大Top K
图
- 实现有向图、无向图、有权图、无权图的邻接矩阵和邻接表表示方法
- 实现图的深度优先搜索、广度优先搜索
- 实现Dijkstra算法、A*算法
- 实现拓扑排序的Kahn算法、DFS算法
回溯
- 利用回溯算法求解八皇后问题
- 利用回溯算法求解0-1背包问题
分治
- 利用分治算法求一组数据的逆序对个数
动态规划
- 0-1背包问题
- 最小路径和
- 编程实现莱文斯坦最短编辑距离
- 编程实现查找两个字符串的最长公共子序列
- 编程实现一个数据序列的最长递增子序列
剑指Offer & LeetCode
3 C++11
适合初学者的经典教程
- 侯捷C++大系
- C++面向对象高级编程
- STL与泛型编程
- Accelerated C++
- C++ in Action
- A Tour of C++
推荐理由:直入主题,开门见山,向初学者展示 C++ 的核心,而没有一上来就给读者灌输一大堆语法的繁文缛节,严重影响学习的兴趣和效率。所以这儿没有给初学者推荐《C++ Primer》、《Effective C++》。
几个常用类的实现
complex(封装与数据抽象)
#ifndef __MYCOMPLEX__
#define __MYCOMPLEX__
class complex;
complex&
__doapl (complex* ths, const complex& r);
complex&
__doami (complex* ths, const complex& r);
complex&
__doaml (complex* ths, const complex& r);
class complex
{
public:
complex (double r = 0, double i = 0): re (r), im (i) { }
complex& operator += (const complex&);
complex& operator -= (const complex&);
complex& operator *= (const complex&);
complex& operator /= (const complex&);
double real () const { return re; }
double imag () const { return im; }
private:
double re, im;
friend complex& __doapl (complex *, const complex&);
friend complex& __doami (complex *, const complex&);
friend complex& __doaml (complex *, const complex&);
};
inline complex&
__doapl (complex* ths, const complex& r)
{
ths->re += r.re;
ths->im += r.im;
return *ths;
}
inline complex&
complex::operator += (const complex& r)
{
return __doapl (this, r);
}
inline complex&
__doami (complex* ths, const complex& r)
{
ths->re -= r.re;
ths->im -= r.im;
return *ths;
}
inline complex&
complex::operator -= (const complex& r)
{
return __doami (this, r);
}
inline complex&
__doaml (complex* ths, const complex& r)
{
double f = ths->re * r.re - ths->im * r.im;
ths->im = ths->re * r.im + ths->im * r.re;
ths->re = f;
return *ths;
}
inline complex&
complex::operator *= (const complex& r)
{
return __doaml (this, r);
}
inline double
imag (const complex& x)
{
return x.imag ();
}
inline double
real (const complex& x)
{
return x.real ();
}
inline complex
operator + (const complex& x, const complex& y)
{
return complex (real (x) + real (y), imag (x) + imag (y));
}
inline complex
operator + (const complex& x, double y)
{
return complex (real (x) + y, imag (x));
}
inline complex
operator + (double x, const complex& y)
{
return complex (x + real (y), imag (y));
}
inline complex
operator - (const complex& x, const complex& y)
{
return complex (real (x) - real (y), imag (x) - imag (y));
}
inline complex
operator - (const complex& x, double y)
{
return complex (real (x) - y, imag (x));
}
inline complex
operator - (double x, const complex& y)
{
return complex (x - real (y), - imag (y));
}
inline complex
operator * (const complex& x, const complex& y)
{
return complex (real (x) * real (y) - imag (x) * imag (y),
real (x) * imag (y) + imag (x) * real (y));
}
inline complex
operator * (const complex& x, double y)
{
return complex (real (x) * y, imag (x) * y);
}
inline complex
operator * (double x, const complex& y)
{
return complex (x * real (y), x * imag (y));
}
complex
operator / (const complex& x, double y)
{
return complex (real (x) / y, imag (x) / y);
}
inline complex
operator + (const complex& x)
{
return x;
}
inline complex
operator - (const complex& x)
{
return complex (-real (x), -imag (x));
}
inline bool
operator == (const complex& x, const complex& y)
{
return real (x) == real (y) && imag (x) == imag (y);
}
inline bool
operator == (const complex& x, double y)
{
return real (x) == y && imag (x) == 0;
}
inline bool
operator == (double x, const complex& y)
{
return x == real (y) && imag (y) == 0;
}
inline bool
operator != (const complex& x, const complex& y)
{
return real (x) != real (y) || imag (x) != imag (y);
}
inline bool
operator != (const complex& x, double y)
{
return real (x) != y || imag (x) != 0;
}
inline bool
operator != (double x, const complex& y)
{
return x != real (y) || imag (y) != 0;
}
#include <cmath>
inline complex
polar (double r, double t)
{
return complex (r * cos (t), r * sin (t));
}
inline complex
conj (const complex& x)
{
return complex (real (x), -imag (x));
}
inline double
norm (const complex& x)
{
return real (x) * real (x) + imag (x) * imag (x);
}
#endif //__MYCOMPLEX__
String(内存管理与拷贝控制)
#ifndef __MYSTRING__
#define __MYSTRING__
class String
{
public:
String(const char* cstr=0);
String(const String& str);
String& operator=(const String& str);
~String();
char* get_c_str() const { return m_data; }
private:
char* m_data;
};
#include <cstring>
inline
String::String(const char* cstr)
{
if (cstr) {
m_data = new char[strlen(cstr)+1];
strcpy(m_data, cstr);
}
else {
m_data = new char[1];
*m_data = '\0';
}
}
inline
String::~String()
{
delete[] m_data;
}
inline
String& String::operator=(const String& str)
{
if (this == &str)
return *this;
delete[] m_data;
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
return *this;
}
inline
String::String(const String& str)
{
m_data = new char[ strlen(str.m_data) + 1 ];
strcpy(m_data, str.m_data);
}
#include <iostream>
using namespace std;
ostream& operator<<(ostream& os, const String& str)
{
os << str.get_c_str();
return os;
}
#endif
Vector<T>(模板编程)
#ifndef VECTOR_H
#define VECTOR_H
#include <algorithm>
#include <iostream>
#include <stdexcept>
#include "dsexceptions.h"
template <typename Object>
class Vector
{
public:
explicit Vector( int initSize = 0 )
: theSize{ initSize }, theCapacity{ initSize + SPARE_CAPACITY }
{ objects = new Object[ theCapacity ]; }
Vector( const Vector & rhs )
: theSize{ rhs.theSize }, theCapacity{ rhs.theCapacity }, objects{ nullptr }
{
objects = new Object[ theCapacity ];
for( int k = 0; k < theSize; ++k )
objects[ k ] = rhs.objects[ k ];
}
Vector & operator= ( const Vector & rhs )
{
Vector copy = rhs;
std::swap( *this, copy );
return *this;
}
~Vector( )
{ delete [ ] objects; }
Vector( Vector && rhs )
: theSize{ rhs.theSize }, theCapacity{ rhs.theCapacity }, objects{ rhs.objects }
{
rhs.objects = nullptr;
rhs.theSize = 0;
rhs.theCapacity = 0;
}
Vector & operator= ( Vector && rhs )
{
std::swap( theSize, rhs.theSize );
std::swap( theCapacity, rhs.theCapacity );
std::swap( objects, rhs.objects );
return *this;
}
bool empty( ) const
{ return size( ) == 0; }
int size( ) const
{ return theSize; }
int capacity( ) const
{ return theCapacity; }
Object & operator[]( int index )
{
#ifndef NO_CHECK
if( index < 0 || index >= size( ) )
throw ArrayIndexOutOfBoundsException{ };
#endif
return objects[ index ];
}
const Object & operator[]( int index ) const
{
#ifndef NO_CHECK
if( index < 0 || index >= size( ) )
throw ArrayIndexOutOfBoundsException{ };
#endif
return objects[ index ];
}
void resize( int newSize )
{
if( newSize > theCapacity )
reserve( newSize * 2 );
theSize = newSize;
}
void reserve( int newCapacity )
{
if( newCapacity < theSize )
return;
Object *newArray = new Object[ newCapacity ];
for( int k = 0; k < theSize; ++k )
newArray[ k ] = std::move( objects[ k ] );
theCapacity = newCapacity;
std::swap( objects, newArray );
delete [ ] newArray;
}
// Stacky stuff
void push_back( const Object & x )
{
if( theSize == theCapacity )
reserve( 2 * theCapacity + 1 );
objects[ theSize++ ] = x;
}
// Stacky stuff
void push_back( Object && x )
{
if( theSize == theCapacity )
reserve( 2 * theCapacity + 1 );
objects[ theSize++ ] = std::move( x );
}
void pop_back( )
{
if( empty( ) )
throw UnderflowException{ };
--theSize;
}
const Object & back ( ) const
{
if( empty( ) )
throw UnderflowException{ };
return objects[ theSize - 1 ];
}
// Iterator stuff: not bounds checked
typedef Object * iterator;
typedef const Object * const_iterator;
iterator begin( )
{ return &objects[ 0 ]; }
const_iterator begin( ) const
{ return &objects[ 0 ]; }
iterator end( )
{ return &objects[ size( ) ]; }
const_iterator end( ) const
{ return &objects[ size( ) ]; }
static const int SPARE_CAPACITY = 2;
private:
int theSize;
int theCapacity;
Object * objects;
};
#endif
表达式计算器(面向对象)
class Node
{
public:
virtual ~Node () {}
virtual double Calc () const = 0;
};
class NumNode: public Node
{
public:
NumNode (double num) : _num (num ) {}
double Calc () const;
private:
const double _num;
};
double NumNode::Calc () const
{
std::cout << "Numeric node " << _num << std::endl;
return _num;
}
class BinNode: public Node
{
public:
BinNode (Node * pLeft, Node * pRight)
: _pLeft (pLeft), _pRight (pRight) {}
~BinNode ();
protected:
Node * const _pLeft;
Node * const _pRight;
};
BinNode::~BinNode ()
{
delete _pLeft;
delete _pRight;
}
class AddNode: public BinNode
{
public:
AddNode (Node * pLeft, Node * pRight)
: BinNode (pLeft, pRight) {}
double Calc () const;
};
double AddNode::Calc () const
{
std::cout << "Adding\n";
return _pLeft->Calc () + _pRight->Calc ();
}
class MultNode: public BinNode
{
public:
MultNode (Node * pLeft, Node * pRight)
: BinNode (pLeft, pRight) {}
double Calc () const;
};
double MultNode::Calc () const
{
std::cout << "Multiplying\n";
return _pLeft->Calc () * _pRight->Calc ();
}
int main ()
{
// ( 20.0 + (-10.0) ) * 0.1
Node * pNode1 = new NumNode (20.0);
Node * pNode2 = new NumNode (-10.0);
Node * pNode3 = new AddNode (pNode1, pNode2);
Node * pNode4 = new NumNode (0.1);
Node * pNode5 = new MultNode (pNode3, pNode4);
std::cout << "Calculating the tree\n";
// tell the root to calculate itself
double x = pNode5->Calc ();
std::cout << "Result: " << x << std::endl;
delete pNode5; // and all children
}
4 矩阵&概率统计
矩阵类的实现
#ifndef MATRIX_H
#define MATRIX_H
#include <vector>
#include <initializer_list>
using namespace std;
template <typename Object>
class matrix
{
public:
matrix( int rows, int cols ) : array( rows )
{
for( auto & thisRow : array )
thisRow.resize( cols );
}
matrix( initializer_list<vector<Object>> lst ) : array( lst.size( ) )
{
int i = 0;
for( auto & v : lst )
array[ i++ ] = std::move( v );
}
matrix( const vector<vector<Object>> & v ) : array{ v }
{ }
matrix( vector<vector<Object>> && v ) : array{ std::move( v ) }
{ }
const vector<Object> & operator[]( int row ) const
{ return array[ row ]; }
vector<Object> & operator[]( int row )
{ return array[ row ]; }
int numrows( ) const
{ return array.size( ); }
int numcols( ) const
{ return numrows( ) ? array[ 0 ].size( ) : 0; }
private:
vector<vector<Object>> array;
};
#endif