Lie group methods

Twan Koolen

March 21, 2017

Integrating differential equations on a manifold

 Example: rotation kinematics in terms of a rotation matrix:$$
\dot{R}=R \hat{\omega}, \quad R \in S O(3), \quad \hat{\omega} x=\omega \times x
$$

or in terms of a unit quaternion:

$$
\dot{q}=\frac{1}{2} q \circ\binom{0}{\omega}, \quad q \in \text { unit quaternions } \cong S U(2)
$$

with ω the angular velocity in body frame.
Naive Euler step:

$$
R_{n+1}=R_{n}+R_{n} \hat{\omega}_{n} h \notin S O \text { (3) }
$$

In general:

$$
\dot{q}=f(q, v) \text { with } q \text { on a manifold }
$$

A quick hack: projection

$$
q_{n+1}=P\left(q_{n}+h f\left(q_{n}, v_{n}\right)\right)
$$

- Easiest to implement
- Accuracy?
- Not the natural thing to do

Using the group multiplication operation

Better: represent the integration step as a group member and compose.

Example:

- Initial orientation: $R_{n} \in S O$ (3)
- Step: $\delta R_{n} \in S O$ (3)
- Final orientation $R_{n+1}=\delta R_{n} R_{n} \in S O$ (3)

Recap: explicit Runge-Kutta methods

Dynamics:

$$
\dot{x}=f(t, x)
$$

Standard explicit Runge-Kutta method with s stages: Big step:

$$
x_{n+1}=x_{n}+h \sum_{i=1}^{s} b_{i} k_{i}
$$

Computed from s baby steps:

$$
\begin{gathered}
k_{i}=f\left(t_{i}, y_{i}\right) \\
t_{i}=t_{n}+c_{i} h \\
y_{i}=x_{n}+h \sum_{j=1}^{i-1} a_{i j} k_{i}
\end{gathered}
$$

Recap: explicit Runge-Kutta methods

Example: Heun's method (improved Euler):

$$
\begin{aligned}
& \begin{array}{l|ll|l}
c_{1} & & & 0 \\
c_{2} & a_{21} & & \\
\hline & b_{1} & b_{2} & \\
1 & 1 & 1 / 2 \quad 1 / 2
\end{array} \quad \text { (Butcher tableau) } \\
& k_{1}=f\left(t_{n}, x_{n}\right) \\
& k_{2}=f\left(t_{n}+1 h, x_{n}+1 h k_{1}\right) \\
& x_{n+1}=x_{n}+\frac{1}{2} h k_{1}+\frac{1}{2} h k_{2}
\end{aligned}
$$

Recap: explicit Runge-Kutta methods

Example: classical 4th order Runge-Kutta method:

c_{1}					0			
c_{2}	a_{21}				$1 / 2$	$1 / 2$		
c_{3}	a_{31}	a_{32}			$=$	$1 / 2$	0	$1 / 2$
c_{s}	a_{31}	a_{32}	a_{33}					
	b_{1}	b_{2}	b_{3}	b_{4}	1	0	0	1
		$1 / 6$	$1 / 3$	$1 / 3$	$1 / 6$			

Four stages (evaluations of the dynamics)
Total accumulated error: $O\left(h^{4}\right)$.

Crouch-Grossman methods

Regular RK:

Crouch-Grossman:

$$
\begin{aligned}
x_{n+1} & =x_{n}+h \sum_{i=1}^{s} b_{i} k_{i} & x_{n+1} & =\exp \left(h b_{s} k_{s}\right) \circ \cdots \circ \exp \left(h b_{1} k_{1}\right) x_{n} \\
k_{i} & =f\left(t_{i}, y_{i}\right) & k_{i} & =f\left(t_{i}, y_{i}\right)(\text { returns a tangent vector }) \\
t_{i} & =t_{n}+c_{i} h & t_{i} & =t_{n}+c_{i} h \\
y_{i} & =x_{n}+h \sum_{j=1}^{i-1} a_{i j} k_{i} & y_{i} & =\exp \left(h a_{i, i-1} k_{i-1}\right) \circ \cdots \circ \exp \left(h a_{i 1} k_{1}\right) x_{n}
\end{aligned}
$$

Crouch-Grossman methods

Coefficients for third-order method:

0			
$3 / 4$	$3 / 24$		
$17 / 24$	$119 / 216$	$17 / 108$	
	$13 / 51$	$-2 / 3$	$24 / 17$

- Need to use very specific coefficients!
- Coefficients for higher order methods are hard to compute.
- Fourth order method requires five stages!

Munthe-Kaas methods

Instead of making steps on the manifold using group multiplication, rewrite dynamics in terms of local coordinates around previous state.

chart centered around q_{n}

Munthe-Kaas methods

Example: rotation kinematics.

- Initial local coordinates around $R_{n}: \phi=0$.
- Compute derivative in terms of local coordinates (Bortz equation):

$$
\dot{\phi}=\omega+\frac{\phi \times \omega}{2}+\frac{1}{\|\phi\|^{2}}\left(1-\frac{\|\phi\| \sin \|\phi\|}{2(1-\cos \|\phi\|)}\right) \phi \times(\phi \times \omega)
$$

- Compute stages in local coordinates
- Convert back to global coordinates: $R_{n+1}=\exp (\phi) R_{n}$

Munthe-Kaas methods

Properties:

- Can just use any integration method on local coordinate chart!
- Can use approximation of exponential coordinates.
- Performs better and is implemented more efficiently than Crouch-Grossman

References

(Arieh Iserles, Hans Z Munthe-Kaas, Syvert P Nørsett, and Antonella Zanna.
Lie-group methods.
Acta Numerica 2000, 9:215-365, 2000.
围 Jonghoon Park and Wan-Kyun Chung.
Geometric integration on euclidean group with application to articulated multibody systems.
IEEE Transactions on Robotics, 21(5):850-863, 2005.

