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Introduction

Idea

Obtaining a reasonable
approximation to a general robot
foot by using a union of several
spheres.

Objective

Simulating the motion of a
rolling sphere on the ground.

Energy Audit

Also it is desirable for the model to support energy audit (a
complete account of energy flows in the system).

Morteza Azad and Roy Featherstone Contact Modeling



Normal Force Model Friction Force Model Energy Audit Rolling Motion Conclusions

Classical Models

Hertz’s theory for the contact force between a sphere and a
plate.

F = kz
3
2

A general non-linear equation with damping term was first
introduced by Hunt and Crossley [1975].

F = kzn + λzp żq

Hunt and Crossley [1975], Lankarani and Nikravesh [1990],
and Marhefka and Orin [1999] have set the values of these
parameters as n = 3

2 , p = 3
2 and q = 1.

F = kz
3
2 + λz

3
2 ż
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Our Model

The ground is considered to contain a uniform distribution of
infinitely many non-linear spring-damper pairs.

Sphere 

According to our model, the normal force is given by:

f = fK + fD

where fK is the summation of the spring forces and fD is the
summation of the damper forces.

Morteza Azad and Roy Featherstone Contact Modeling



Normal Force Model Friction Force Model Energy Audit Rolling Motion Conclusions

Contact Area

Defining the contact area to be the area of undeformed
ground that makes contact with the sphere

  

! 

" 

! #   

A(z) = πl2 = π(2rz − z2) = 2πrz(1 − z

2r
)

assumming z ≪ 2r , for z > 0 we have

A(z) = 2πrz
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Spring Force

Defining KA(z) as a function of z .

 

) 

 

 

 

) 

 

 

 

fK =
∑

A(z)KA(0)δξ + A(z − δξ)KA(δξ)δξ + . . . + A(δξ)KA(z − δξ)δξ

which gives us

fK =

∫ z

0
A(ξ)KA(z − ξ)dξ
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Spring Force

Choosing KA(z) in order to conform with Hertz’s theory:

KA(z) =
E ∗

2π
√

r
z−

1
2

Where

1

E ∗
=

1 − ν2
1

E1
+

1 − ν2
2

E2

So the spring force is

fK =

{

4
3E ∗

√
r z

3
2 if z ≥ 0

0 if z < 0

}

= Knz
3
2
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Damper Force

Damping force (fD) is

fD =

∫

A(z)
DA(ζ(A)) ż dA

Assumming that DA(z) has the same relation with z as KA(z)
does:

DA(z) = α z−
1
2

We have

fD =

{

4πrαz
1
2 ż if z ≥ 0

0 if z < 0

}

= Dnz
1
2 ż

Our Normal Force Model

f = Knz
3
2 + Dnz

1
2 ż
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Coefficient of Restitution
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Coefficient of Restitution
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A

B

C

D

A: a steel sphere (r = 1.27cm) and a cast iron plate

B: a steel sphere (r = 1.65cm) and a cork plate

C: a steel sphere (r = 1.27cm) and a brass plate

D: a steel sphere (r = 1.27cm) and a cold-worked lead plate.

Morteza Azad and Roy Featherstone Contact Modeling



Normal Force Model Friction Force Model Energy Audit Rolling Motion Conclusions

Bouncing Simulation

In bouncing, our model predicts that the sphere will lose
contact with the ground before z has fully returned to zero.
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Friction Model

Our friction model consists of a spring, a damper and a
clutch. The clutch is designed to slip when the ground
reaction force reaches the edge of the friction cone.

Sphere 

Local elastic deformation 

Travelling 

ground 

surface 

element 

Variable 

strength 

clutch 
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Stiction and Slipping Forces

Stiction force in each tangential direction is calculated by:

fstick = −ktu − btVsph

where

kt =
∫

A(z) KA(ζ(A))dA and bt =
∫

A(z) DA(ζ(A))dA

By assumming that both surfaces are isotropic:

fstick = −Ktz
1
2 u − Dtz

1
2 Vsph

where
Kt = 2E ∗

√
r and Dt = 4πr α

Slipping force would be calculated by:

fslip = fstick × µFn

|fstick |
− CV Vclutch
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Energy Audit

Energy audit: keeping track of all energy in the system

Energy conservation principle: at any instant of the
simulation, the summation of the amount of energy which is
dissipated and the amount of energy which is stored in springs
and the body itself must be constant.

EDissipated + ESprings + EBody = constant.
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Energy Audit

Dissipated energy

normal damper (ENDamp)
tangential dampers (ETDamp)
clutch (EClutch)

Stored energy

normal spring (ENSp)
tangential springs (ETSp)
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Energy Plot

Sphere is released from 10cm height with velocity of 0.5m
s in

both x and y directions.
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Rolling Motion

The x components of the position of the COM and the
velocity of the contact point
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Conclusions

A complete full 3D nonlinear contact model which is able to
calculate both normal and friction forces.

A new nonlinear normal force model

Predicting the values of the coefficient of restitution more
accurately than the previous classical ones.

A new nonlinear friction force model in two dimensions.

Simulating the rolling motion of a sphere on the ground
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Thank You Very Much!!

Q&A
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